Photonic bandgap properties of void-based body-centered-cubic photonic crystals in polymer.
نویسندگان
چکیده
We report on the fabrication and characterization of void-based body-centered-cubic (bcc) photonic crystals in a solidified transparent polymer by the use of a femtosecond laser-driven microexplosion method. The change in the refractive index in the region surrounding the void dots that form the bcc structures is verified by presenting confocal microscope images, and the bandgap properties are characterized by using a Fourier transform infrared spectrometer. The effect of the angle of incidence on the photonic bandgaps is also studied. We observe multiple stop gaps with a suppression rate of the main gap of 47% for a bcc structure with a lattice constant of 2.77 microm, where the first and second stop gaps are located at 3.7 microm and 2.2 microm, respectively. We also present a theoretical approach to characterize the refractive index of the material for calculating the bandgap spectra, and confirm that the wavelengths of the observed bandgaps are in good correlation with the analytical predictions.
منابع مشابه
The Unfolding of Bandgap Diagrams of Hexagonal Photonic Crystals Computed with Fdtd
The application of the finite-difference time-domain method with rectangular periodic boundary conditions to the analysis of a hexagonal photonic crystal results in a folded bandgap diagram. The aim of this paper is to introduce a new unfolding method, which allows unambiguously determining the position of the modes in a wavevector space by taking the advantage of the fast Fourier transform of ...
متن کاملDual exposure, two-photon, conformal phase mask lithography for three dimensional silicon inverse woodpile photonic crystals
The authors describe the fabrication and characterization of three dimensional silicon inverse woodpile photonic crystals. A dual exposure, two-photon, conformal phasemask technique is used to create high quality polymer woodpile structures over large areas with geometries that quantitatively match expectations based on optical simulations. Depositing silicon into these templates followed by th...
متن کاملPhotonic crystals of coated metallic spheres
It is shown that simple face-centered-cubic (fcc) structures of both metallic and coated metallic spheres are ideal candidates to achieve a tunable complete photonic bandgap (CPBG) for optical wavelengths using currently available experimental techniques. For coated microspheres with the coating width to plasma wavelength ratio lc/λp ≤ 10% and the coating and host refractive indices nc and nh, ...
متن کاملCore-shell diamond-like silicon photonic crystals from 3D polymer templates created by holographic lithography.
We have fabricated diamond-like silicon photonic crystals through a sequential silica/silicon chemical vapor deposition (CVD) process from the corresponding polymer templates photopatterned by holographic lithography. Core-shell morphology is revealed due to the partial backfilling of the interstitial pores. To model the shell formation and investigate its effect to the bandgap properties, we d...
متن کاملTranslation of interference pattern by phase shift for diamond photonic crystals.
We demonstrate the construction of diamond photonic crystal structures by the translation of a multi-beam interference pattern. Using phase shift of each beam, the double-exposed interference patterns can be aligned in the [111] direction for a face-centered cubic (FCC) and [210] direction for a body-centered cubic (BCC), respectively, producing diamond D from FCC and BCC-diamond like structure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 13 12 شماره
صفحات -
تاریخ انتشار 2005